Drawing on some of my limited HTML5 games experience, and marginally less limited general games and app writing experience, I’d like to write a bit about efficient animation for games on the web. I usually prefer to write about my experiences, rather than just straight advice-giving, so I apologise profusely for how condescending this will likely sound. I’ll try to improve in the future 🙂
There are a few things worth knowing that will really help your game (or indeed app) run better and use less battery life, especially on low-end devices. I think it’s worth getting some of these things down, as there’s evidence to suggest (in popular and widely-used UI libraries, for example) that it isn’t necessarily common knowledge. I’d also love to know if I’m just being delightfully/frustratingly naive in my assumptions.
First off, let’s get the basic stuff out of the way.
Help the browser help you
If you’re using DOM for your UI, which I’d certainly recommend, you really ought to use CSS transitions and/or animations, rather than JavaScript-powered animations. Though JS animations can be easier to express at times, unless you have a great need to synchronise UI animation state with game animation state, you’re unlikely to be able to do a better job than the browser. The reason for this is that CSS transitions/animations are much higher level than JavaScript, and express a very specific intent. Because of this, the browser can make some assumptions that it can’t easily make when you’re manually tweaking values in JavaScript. To take a concrete example, if you start a CSS transition to move something from off-screen so that it’s fully visible on-screen, the browser knows that the related content will end up completely visible to the user and can pre-render that content. When you animate position with JavaScript, the browser can’t easily make that same assumption, and so you might end up causing it to draw only the newly-exposed region of content, which may introduce slow-down. There are signals at the beginning and end of animations that allow you to attach JS callbacks and form a rudimentary form of synchronisation (though there are no guarantees on how promptly these callbacks will happen).
Speaking of assumptions the browser can make, you want to avoid causing it to have to relayout during animations. In this vein, it’s worth trying to stick to animating only transform and opacity properties. Though some browsers make some effort for other properties to be fast, these are pretty much the only ones semi-guaranteed to be fast across all browsers. Something to be careful of is that overflow may end up causing relayouting, or other expensive calculations. If you’re setting a transform on something that would overlap its container’s bounds, you may want to set overflow: hidden on that container for the duration of the animation.
Use requestAnimationFrame
When you’re animating canvas content, or when your DOM animations absolutely must synchronise with canvas content animations, do make sure to use requestAnimationFrame. Assuming you’re running in an arbitrary browsing session, you can never really know how long the browser will take to draw a particular frame. requestAnimationFrame causes the browser to redraw and call your function before that frame gets to the screen. The downside of using this vs. setTimeout, is that your animations must be time-based instead of frame-based. i.e. you must keep track of time and set your animation properties based on elapsed time. requestAnimationFrame includes a time-stamp in its callback function prototype, which you most definitely should use (as opposed to using the Date object), as this will be the time the frame began rendering, and ought to make your animations look more fluid. You may have a callback that ends up looking something like this:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
var startTime = -1; var animationLength = 2000; // Animation length in milliseconds function doAnimation(timestamp) { // Calculate animation progress var progress = 0; if (startTime < 0) { startTime = timestamp; } else { progress = Math.min(1.0, animationLength / (timestamp - startTime)); } // Do animation ... if (progress < 1.0) { requestAnimationFrame(doAnimation); } } // Start animation requestAnimationFrame(doAnimation); |
You’ll note that I set startTime to -1 at the beginning, when I could just as easily set the time using the Date object and avoid the extra code in the animation callback. I do this so that any setup or processes that happen between the start of the animation and the callback being processed don’t affect the start of the animation, and so that all the animations I start before the frame is processed are synchronised.
To save battery life, it’s best to only draw when there are things going on, so that would mean calling requestAnimationFrame (or your refresh function, which in turn calls that) in response to events happening in your game. Unfortunately, this makes it very easy to end up drawing things multiple times per frame. I would recommend keeping track of when requestAnimationFrame has been called and only having a single handler for it. As far as I know, there aren’t solid guarantees of what order things will be called in with requestAnimationFrame (though in my experience, it’s in the order in which they were requested), so this also helps cut out any ambiguity. An easy way to do this is to declare your own refresh function that sets a flag when it calls requestAnimationFrame. When the callback is executed, you can unset that flag so that calls to that function will request a new frame again, like this:
1 2 3 4 5 6 7 8 9 10 11 12 13 |
function redraw() { drawPending = false; // Do drawing ... } var drawPending = false; function requestRedraw() { if (!drawPending) { drawPending = true; requestAnimationFrame(redraw); } } |
Following this pattern, or something similar, means that no matter how many times you call requestRedraw, your drawing function will only be called once per frame.
Remember, that when you do drawing in requestAnimationFrame (and in general), you may be blocking the browser from updating other things. Try to keep unnecessary work outside of your animation functions. For example, it may make sense for animation setup to happen in a timeout callback rather than a requestAnimationFrame callback, and likewise if you have a computationally heavy thing that will happen at the end of an animation. Though I think it’s certainly overkill for simple games, you may want to consider using Worker threads. It’s worth trying to batch similar operations, and to schedule them at a time when screen updates are unlikely to occur, or when such updates are of a more subtle nature. Modern console games, for example, tend to prioritise framerate during player movement and combat, but may prioritise image quality or physics detail when compromise to framerate and input response would be less noticeable.
Measure performance
One of the reasons I bring this topic up, is that there exist some popular animation-related libraries, or popular UI toolkits with animation functions, that still do things like using setTimeout to drive their animations, drive all their animations completely individually, or other similar things that aren’t conducive to maintaining a high frame-rate. One of the goals for my game Puzzowl is for it to be a solid 60fps on reasonable hardware (for the record, it’s almost there on Galaxy Nexus-class hardware) and playable on low-end (almost there on a Geeksphone Keon). I’d have liked to use as much third party software as possible, but most of what I tried was either too complicated for simple use-cases, or had performance issues on mobile.
How I came to this conclusion is more important than the conclusion itself, however. To begin with, my priority was to write the code quickly to iterate on gameplay (and I’d certainly recommend doing this). I assumed that my own, naive code was making the game slower than I’d like. To an extent, this was true, I found plenty to optimise in my own code, but it go to the point where I knew what I was doing ought to perform quite well, and I still wasn’t quite there. At this point, I turned to the Firefox JavaScript profiler, and this told me almost exactly what low-hanging-fruit was left to address to improve performance. As it turned out, I suffered from some of the things I’ve mentioned in this post; my animation code had some corner cases where they could cause redraws to happen several times per frame, some of my animations caused Firefox to need to redraw everything (they were fine in other browsers, as it happens – that particular issue is now fixed), and some of the third party code I was using was poorly optimised.
A take-away
To help combat poor animation performance, I wrote Animator.js. It’s a simple animation library, and I’d like to think it’s efficient and easy to use. It’s heavily influenced by various parts of Clutter, but I’ve tried to avoid scope-creep. It does one thing, and it does it well (or adequately, at least). Animator.js is a fire-and-forget style animation library, designed to be used with games, or other situations where you need many, synchronised, custom animations. It includes a handful of built-in tweening functions, the facility to add your own, and helper functions for animating object properties. I use it to drive all the drawing updates and transitions in Puzzowl, by overriding its requestAnimationFrame function with a custom version that makes the request, but appends the game’s drawing function onto the end of the callback, like so:
1 2 3 4 5 6 7 |
animator.requestAnimationFrame = function(callback) { requestAnimationFrame(function(t) { callback(t); redraw(); }); }; |
My game’s redraw function does all drawing, and my animation callbacks just update state. When I request a redraw outside of animations, I just check the animator’s activeAnimations property first to stop from mistakenly drawing multiple times in a single animation frame. This gives me nice, synchronised animations at very low cost. Puzzowl isn’t out yet, but there’s a little screencast of it running on a Nexus 5: